Learning probabilistic automata: A study in state distinguishability

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning probabilistic automata: A study in state distinguishability

Known algorithms for learning PDFA can only be shown to run in time polynomial in the so-called distinguishability μ of the target machine, besides the number of states and the usual accuracy and confidence parameters. We show that the dependence on μ is necessary in the worst case for every algorithm whose structure resembles existing ones. As a technical tool, a new variant of Statistical Que...

متن کامل

Learning Probabilistic Residual Finite State Automata

We introduce a new class of probabilistic automata: Probabilistic Residual Finite State Automata. We show that this class can be characterized by a simple intrinsic property of the stochastic languages they generate (the set of residual languages is finitely generated) and that it admits canonical minimal forms. We prove that there are more languages generated by PRFA than by Probabilistic Dete...

متن کامل

Learning Probabilistic Finite Automata

Stochastic deterministic finite automata have been introduced and are used in a variety of settings. We report here a number of results concerning the learnability of these finite state machines. In the setting of identification in the limit with probability one, we prove that stochastic deterministic finite automata cannot be identified from only a polynomial quantity of data. If concerned wit...

متن کامل

Polynomial Distinguishability of Timed Automata

We study the complexity of identifying (learning) timed automata in the limit from data. Timed automata are finite state models that model time explicitly, i.e., using numbers. Because timed automata use numbers to represent time, they can be exponentially more compact than models that model time implicitly, i.e., using states. We show three results that are essential in order to exactly determ...

متن کامل

Learning Classes of Probabilistic Automata

Probabilistic finite automata (PFA) model stochastic languages, i.e. probability distributions over strings. Inferring PFA from stochastic data is an open field of research. We show that PFA are identifiable in the limit with probability one. Multiplicity automata (MA) is another device to represent stochastic languages. We show that a MA may generate a stochastic language that cannot be genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2013

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2012.10.009